
1

E X P E R I M E N T A T I O N:

Engine for Applied Research and Technology Transfer
 in Software Engineering

Dieter Rombach

University of Kaiserslautern
Computer Science Department

Software Engineering Chair
Kaiserslautern, Germany

&
Fraunhofer Institute for Experimental Software Engineering (IESE)

Kaiserslautern, Germany

Abstract: The empirical work in NASA’s Software Engineering Laboratory in
the 70’s and 80’s has contributed significantly to the maturing of the sub-
discipline of ‘experimental software engineering’. The development of
experimental technologies ranging from the GQM approach for measurement to
the EF approach for organizational learning provided the scientific basis; the
successful experiments within the SEL development environment served as
successful reference examples for others. The Fraunhofer Institute for
Experimental Software Engineering (IESE) was founded in Germany based on
the successful SEL principles. It was charged with speeding up the transfer of
innovative software engineering technologies into a wide variety of industry
sectors. The concepts of experimentation were developed further and used for a
wide range of purposes from applied research to technology transfer and
training. Already during the short history of IESE a successful track record of
transferring innovative technologies fast and with sustained success has been
established. This presentation focuses on the adaptation of the successful SEL
concepts to a different environment, surveys the wide range of applications of
‘experiments’ as engine for successful technology transfer in a human-based
development environment, and predicts a growing importance of experimental
work in the future.

1. Motivation. The software domain can be characterized by two major
facts: (1) The gap between state-of-the-art as taught at universities and
state-of-the-practice as ‘lived’ in most commercial software
development environments is significantly higher than in other

2

engineering domains, and (2) the body of knowledge available to
practitioners consists predominantly of technologies (e.g., languages,
techniques, and tools), rather than methods and knowledge regarding
the effects of such technologies in practical development
environments. One conclusion is that progress in practice is not
hindered by lack of technology, but by lack of such latter knowledge
which hinders the transfer into practice. Let’s just illustrate the
problem for one example technology: There exists a very large
number of testing techniques today. However, little knowledge exists
as to the relative strengths and weaknesses of these techniques in
different industrial settings. So, why would a project manager decide
to use an alternative testing technique as opposed to the one in use for
several years. What is needed can be compared best to so-called
‘engineering handbooks’ in other engineering disciplines. Such
handbooks describe the available technologies together with their
applicability, strengths and weaknesses for different constraints. This
paper describes how such knowledge can be accumulated in a human-
based development environment via experimentation.

2. Experimentation. There exist many different ways of accumulating
software development knowledge. One very important form of such
knowledge is experience derived from actual application of
technologies. That means experience is based on product/process
feedback loops in that process technology is applied, the impact on the
resulting products is observed, and possible improvements regarding
the process technology are identified via root cause analysis. In the
context of this paper, experience resulting from projects accidentally
or experience existing implicitly only is not considered. However, all
experiences resulting from systematic hypothesis testing in either fully
controlled laboratory experiments or semi-controlled field
experiments and field case studies, and producing explicitly sharable
insights (models) are considered. Experiments are one of the pre-
requisites for sustained learning; it is much easier to change behavior
based on documented first-hand experience, rather than knowledge
from the world-at-large. Experiments are applicable to basic research
for the purpose of understanding, to applied research for the purpose
of packaging technologies together with information about their
effects in varying project contexts, to teaching & training in order to
experience the benefits of new technologies for one’s own
development tasks before project pressure could result in falling back

3

to the old technologies for the fear of risk regarding one’s own
performance, and to technology transfer for the purpose of adapting
new technologies optimally to one’s project context and providing
cost/benefit.

3. The Role of Experimentation in Software Engineering. The
software domain is characterized by a number of specific
characteristics. The most important ones are that most development
technologies are human-based and that the data are less frequent and
mostly of non-parametric nature. The human-based nature of most
technologies makes (a) the change process particularly hard as the
‘execution engine’ human being needs to be convinced of the benefits
of changing to a new technology, and (b) the success of any new
technology depends on the adherence to the process guidelines
associated with that new technology. Both involves weighing the risk
of using the new technology versus the risk of staying with the old
technology. Basically, the cardinal question is ‘Does it work for
ME?’. Experience data from one’s very environment are an important
source of confidence for changing to and staying with a new
technology. The less frequent and mostly non-parametric nature of
software engineering data requires different techniques for data
analysis – especially the combination of qualitative and quantitative
analysis. Beyond that, many of the experimental techniques known
from other areas can be applied.

4. Available Tool Box for Experimental Software Engineering. The
existent body of technologies for experimentation in software
engineering itself is significant and growing constantly. Most of the
techniques have been initially created in (or have been at least
stimulated by) NASA’s Software Engineering Laboratory (SEL).
Among the most important technologies are

- the Goal/Question/Metric (GQM) approach for measurement (e.g.,
[Bas93.1], [Rom91]), supporting the derivation of metrics from a
comprehensive goal specification

- the Quality Improvement Paradigm (QIP) method (e.g., [Bas93.2]),
enabling the integration of sound project feedback for project
control with cross-project learning (NOTE: It adapts the
Plan/Do/Check/Act approach from manufacturing to the specifics
of the software domain)

4

- the Experience Factory (EF) approach (e.g., [Bas93.2]), defining
extra learning related roles and integrating them with the
traditional software development roles

- a portfolio of experimental designs (e.g., [Bas86]), ranging from
controlled experiments to regular field case studies

- a variety of analysis methods (e.g., [Bri92]) for non-parametric
software engineering data, integrating qualitative and quantitative
analysis techniques

 In addition, there exist

- a number of reference laboratory environments applying the above
experimental technologies such as NASA’s SEL as the ‘mother of
all laboratory environments’, Fraunhofer IESE in Germany, and
CAESAR in Australia

- a number of exchange forums such as the International Network
for Software Engineering Research (ISERN) for researchers or the
Software Experience Consortium (SEC) for practitioners

- a growing number of conferences (e.g., METRICS , SEL
Workshop) and journals (e.g., International Journal for Empirical
Software Engineering)

All this provides a sound starting point for experimental work. The
ISERN Network is open to everybody interested in further develop-
ing the experimental technologies, teaming up in concrete technology
experiment replication, and exchanging all kinds of experiences. The
contact address is ‘isern@informatik.uni-kl.de’. The SEC Consortium
is open for application by companies active in the area of empirical
work or corporate experience management. The contact address is
‘fshull@fc-md.umd.edu’.

5. Fraunhofer IESE: An Institute built on the Experimental
Paradigm. The Fraunhofer Gesllschaft e.V. in Germany is Europe’s
largest applied research and technology transfer organization. It
consists of 48 institutes ranging in application domain from material
sciences and production technology to information & communication
technology and life sciences. These institutes receive approximately
30% base funding from government; the remaining 70% of their
operating budgets have to be covered from industry project income.

5

 The Fraunhofer Institute for Experimental Software Engineering
(IESE) became the 48th permanent Fraunhofer Institute [Rom96].
Founded in 1996, its area of competence is software engineering; its
applied research and transfer model is based on the experimental
paradigm. That means Fraunhofer IESE helps companies to establish
experimentally based learning organizations as a pre-requisite for
sustained improvements, and then helps them introduce new
innovative software development technologies (technical &
managerial). With the base funding from government, technologies
from basic research institutions are being evaluated via
experimentation, and packaged together with the experimental results
for transfer into specific domain and company environments.

Today, Fraunhofer IESE employees 80 full time scientists together
with about 60 part-time personnel such as students and consultants.
Th institute language is ‘English’; 25% of personnel is non-German.
The percentage of industrial income has risen to about 70% within
three years. Collaborations include a large number of Europe’s
leading companies in the sectors of telecom, automotive & aerospace,
and banking/insurance/trade.

Fraunhofer IESE has been created as the German instantiation of the
NASA/SEL laboratory model. It was widely accepted that a closer
collaboration between academia and industry was needed. This
institutionalized model – allowing for long-term trusting relationships
between academia and companies – was the answer. The reference to
the working SEL example was one of the major arguments to finally
convince companies and government of the opportunity at hand.
Many of the concepts of IESE are based on SEL experiences by
myself during my tenure at the University of Maryland and my
involvement with NASA/SEL during the 1986-1991 time frame.

The main SEL concepts adopted include

- provision of an environment in which researchers, software
developers, and customers can work together

- use of experimentation as a major research and technology transfer
engine

- establishment of long-term relationships with development
organizations

6

- exposing researchers to practice and practitioners to research
- have research being driven by practical needs (= applied research!)

However, there are some important differences compared to the SEL.
They include

- operation as a business due to the fact that Fraunhofer Gesellschaft
e.V. is a legal non-for-profit entity not associated with any
university or for-profit company environment (business plan for
140 employees!)

- tougher sales job for close academia/industry collaboration due to
a historically wider gap between academia and industry in
Germany as compared to the US

- need for critical mass in IESE core competence areas personnel-
wise due to the expectation by companies to support them
strategically (i.e., long-term, always with experienced personnel)

- need for application sector know-how in addition to software
engineering competence due to the fact that IESE collaborates with
companies from different industry sectors

- need for complex incentive structure in order to provide equal
motivation to researchers and practitioners working in IESE

Although, many of the experiences and lessons learned within the
SEL could be reused, the changes due to the collaboration culture and
heterogeneity in customer base posed the biggest challenges.
However, the achieved high standing of IESE within the scientific and
industrial community demonstrates the possibility of replicating the
SEL experience.

6. Useful Applications. This section describes briefly some of the
typical applications of the experimental paradigm within the
Fraunhofer IESE. These applications comprise – due IESE’s mission
– applied research, teaching & training, and technology transfer. It is
intended to describe the wide applicability and usefulness of
experimentation – even in a very industry oriented setting.

6.1. Applied Research. It has been firmly established at IESE that
applied research in software engineering produces new/refined/exis-
ting technologies together with recorded observations regarding their
effectiveness in one or a class of industrial setting (i.e., certain

7

constraints). These observations need to be produced by some
appropriate form of experimentation. These observations are only
useful, if the underlying experiment is documented well enough to be
repeatable by anyone challenging the findings or trying to replicate
them in a slightly different environment. Observations from non-
repeatable experiments do not contribute to the state-of-the-art. In that
context, it must also be agreed that experiments with negative results
are equally valuable. Negative results combined with qualitative
analysis investigating possible causes and deriving new hypotheses
contribute to learning. There exist only badly designed and/or
performed experiments, no bad results!

 Such experiments have been done for most of the IESE technologies
ranging from software development to management and experimental
technologies. The most prominent experiments include the

- effectiveness & efficiency of step-wise abstraction code reading
(e.g., [Bas87])

- effectiveness & efficiency of perspective-based requirements
reading (e.g., [Bas96])

- maintainability of well-structured OO programs (e.g., [Bri97])
- maintainability of well-documented (traceability from requiremens

to code) programs
- cost/benefit ratio for product line development

All these experimental results are published in the literature. Most of
them are accessible through the IESE web site. More experiments on
the above as well as other topics are needed. Every software
engineering researcher should feel challenged to participate. The
International Software Engineering Research Network (ISERN)
provides a stimulating environment to learn, share and collaborate.
Please contact ISERN (www.iese.fhg.de/ISERN/, isern@informatik.uni-
kl.de)!

6.2. Teaching & Training. Software engineering teaching and training
must include the topic of experimental methods (see e.g., CMSC735
at the University of Maryland OR SE2 at the University of
Kaiserslautern) as well as their practical application to self-experience
important software engineering principles (see examples from the
University of Kaiserslautern below!). The simple lecturing of software

8

engineering principles results too often in them being ignored during
the next development tasks. Again the issue is that changing behavior
requires motivation that the risk of change is manageable.
Experiments as part of teaching can provide the necessary motivation.
During practical industrial training such experiments can be repeated
for the same reason of motivation for change. In addition,
experimentation can demonstrate the applicability of some technology
to the specific company setting and suggest some necessary
adjustments prior to real use.

Together with the University of Kaiserslauternn Fraunhofer IESE has
developed a number of technology demonstration experiments which
are being repeated during every graduate level software engineering
class as well as during industrial training (modified according to
company constraints!). The standard experiments include

- demonstrating the superiority (i.e., effectiveness, efficiency) of
code reading over unit testing (adaptation of the old ‘Selby’
experiment) (e.g., [Lot96])

- demonstrating the superiority (better understandability, modifia-
bility) of well-structured OO designs over worse structured ones

- demonstrating the superiority (better modifiability) of tractably
documented programs over less tractably documented ones

- demonstrating the superiority (i.e., effectiveness, efficiency) of
perspective-based reading of informal requirements over other
reading techniques

Each of these experiments has been performed at least three times.
Comprehensive laboratory packages are available describing the
experiment and providing key artifacts for easy replication in other
environments.

6.3. Technology Transfer. The purpose of experimentation in
technology transfer is twofold: First before the introduction of a
candidate new technology experimentation helps to convince
personnel (top management to invest in it, project management to
support it, and project personnel to ‘live’ it under project pressure) of
the potential benefits of a pre-packaged new technology, and it helps
to adapt pre-packaged technology to specific needs of the target
organization. Second during use of the new technology

9

experimentation helps to change the technology further in order to
optimize its effects, and it helps to re-enforce its continued use and, as
a result thereof, ensures its continued gains.

During its 3 year history Fraunhofer IESE has contributed to many
sustained process improvements in industry which would have been
impossible without experimentation (e.g., [Lai97]). An extensive list
of company references can be obtained from the IESE web site.

7. Outlook. Experimentation is becoming an integral sub-discipline of
software engineering. Reflecting the general needs of an engineering
discipline and the specific characteristics of the software domain, a
body of technologies and reference applications have been created.
The role of NASA/SEL has been equally instrumental to the area of
experimentation as has been the SEI’s role to the area of assessments.
NASA/SEL together with its off-springs (e.g., Fraunhofer IESE) has
pioneered the application of experimentation to speed up the
accumulation of shareable, testable & repeatable knowledge in
research, to raise a generation of true software engineers thru teaching
and training, and to speed up the infusion of innovative software
development technologies into practice in technology transfer
programs. More and more environments will recognize that
experimentation does not represent additional effort, but rather speeds
up the production of real contributions to the state-of-the-art in
software engineering and their transfer into practice. As the
performance of real experiments require laboratory set-ups at
universities or in companies, more of such environments must be
established.

I wish the SEL a successful future! May it spin off more
laboratory environments around the globe! May it be valued
inside NASA as highly as it is outside!

8. References.

à [Bas93.1] Basili, Caldiera & Rombach, The GQM Paradigm, in ‘Encyclopedia
of Software Engineering’ (John J. Marciniak, Ed-in-Chief), John Wiley &
Sons, Inc., 1993.

à [Bas93.2] Basili, Caldiera & Rombach, The Experience Factory, in
‘Encyclopedia of Software Engineering’ (John J. Marciniak, Ed-in-Chief),
John Wiley & Sons, Inc., 1993.

10

à [Bas87] Basili & Selby, Comparing the Effectiveness of Software Testing
Strategies, IEEE Transactions on Software Engineering, vol. 13, no. 12, pp.
1278-1296, December 1987.

à [Bas86] Basili, Selby & Hutchens, Experimentation in Software Engineering,
IEEE Transactions on Software Engineering, vol. 12, no. 7, pp. 733-743, July
1986.

à [Bas96] Basili, Laitenberger, Shull et al, The Empirical Investigation of
Perspective-Basded Reading, International Journal of Empirical Software
Engineering, vol. 1, no. 2, pp. 133-164, 1996.

à [Bri92] Briand, Basili & Thomas, A Pattern Recognition Approach to
Software Engineering Data Analysis, IEEE Transactions on Software
Engineering, vol. 18, no. 11, pp. 931-942, November 1992.

à [Bri97] Briand, Bunse et al, An Experimental Comparison of the
Maintainability of Object Oriented and Structured Design Documents,
International Journal of Empirical Software Engineering, vol. 2, no. 3, pp.
291-312, 1997.

à [Lai97] Laitenberger & DeBaud, Perspective-Based Reading of Code
Documents at Robert-Bosch GmbH, Information & Software Technology,
vol. 39, pp. 781-791, 1997.

à [Lot96] Lott, Rombach, Repeatable Software Engineering Experiments for
Comparing Defect-Detection Techniques, International Journal of Empirical
Software Engineering, vol. 1, no. 3, pp. 241-277, 1996.

à [Rom91] Rombach, Practical Benefits of Goal-Oriented Measurement, in
Software Reliability and Metrics (Fenton & Littlewood, Eds.), Elsevier Publ.,
1991.

à [Rom96] Rombach et al, New Institute for Applied Software Engineering
Research, International Software Process Journal, vol. 2, no. 2, 1996.

9. Contacts. For further information about this paper, please contact the
author under ‘rombach@iese.fhg.de’. For further information
regarding the Software Engineering Chair at the University of
Kaiserslautern, please check ‘wwwagse.informatik.uni-kl.de’; for
further information about the Fraunhofer Institute IESE, please check
‘www.iese.fhg.de’. For information about the International Software
Engineering Research Network (ISERN), please check
‘www.iese.fhg.de/ISERN/’ or contact ‘info@iese.fhg.de’. For
information about SEC Consortium, please contact ‘fshull@fc-
md.umd.edu’.

11

